Empirical Comparison of Fast Clustering Algorithms for Large Data Sets
نویسندگان
چکیده
Several fast algorithms for clustering very large data sets have been proposed in the literature. CLARA is a combination of a sampling procedure and the classical PAM algorithm, while CLARANS adopts a serial randomized search strategy to find the optimal set of medoids. GAC-R and GAC-RARw exploit genetic search heuristics for solving clustering problems. In this research, we conducted an empirical comparison of these four clustering algorithms over a wide range of data characteristics. According to the experimental results, CLARANS outperforms its counterparts both in clustering quality and execution time when the number of clusters increases, clusters are more closely related, more asymmetric clusters are present, or more random objects exist in the data set. With a specific number of clusters, CLARA can efficiently achieve satisfactory clustering quality when the data size is larger, whereas GAC-R and GAC-RARw can achieve satisfactory clustering quality and efficiency when the data size is small, the number of clusters is small, and clusters are more distinct or symmetric.
منابع مشابه
An Empirical Comparison of Distance Measures for Multivariate Time Series Clustering
Multivariate time series (MTS) data are ubiquitous in science and daily life, and how to measure their similarity is a core part of MTS analyzing process. Many of the research efforts in this context have focused on proposing novel similarity measures for the underlying data. However, with the countless techniques to estimate similarity between MTS, this field suffers from a lack of comparative...
متن کاملAn Incremental DC Algorithm for the Minimum Sum-of-Squares Clustering
Here, an algorithm is presented for solving the minimum sum-of-squares clustering problems using their difference of convex representations. The proposed algorithm is based on an incremental approach and applies the well known DC algorithm at each iteration. The proposed algorithm is tested and compared with other clustering algorithms using large real world data sets.
متن کاملKnowledge discovery from patients’ behavior via clustering-classification algorithms based on weighted eRFM and CLV model: An empirical study in public health care services
The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer ...
متن کاملKnowledge discovery from patients’ behavior via clustering-classification algorithms based on weighted eRFM and CLV model: An empirical study in public health care services
The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer ...
متن کاملSolving Data Clustering Problems using Chaos Embedded Cat Swarm Optimization
In this paper, a new method is proposed for solving the data clustering problem using Cat Swarm Optimization (CSO) algorithm based on chaotic behavior. The problem of data clustering is an important section in the field of the data mining, which has always been noted by researchers and experts in data mining for its numerous applications in solving real-world problems. The CSO algorithm is one ...
متن کامل